熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,
包括如何和牌、胡牌、、碰、等。只有了解了规则,才能更好地制定策略。 克制下家:在麻将桌上,克制下家是一个重要的策略。作为上家,你可以通过控制打出的牌来影响下家的牌局,从而增加自己赢牌的机会。 灵活应变:在麻将比赛中,情况会不断发生变化。你需要根据手中的牌和牌桌上的情况来灵活调整策略。比如,当手中的牌型不好时,可以考虑改变打法,选择更容易和牌的方式。 记牌和算牌:记牌和算牌是麻将高手的必备技能。通过记住已经打出的牌和剩余的牌,你可以更好地接下来的牌局走向,从而做出更明智的决策。 保持冷静:在麻将比赛中,保持冷静和理智非常重要。不要因为一时的胜负而影响情绪,导致做出错误的决策。要时刻保持清醒的头脑,分析牌局,做出佳的选择。
通过添加客服微信
请注意,虽然微乐麻将自建房胜负规律策略可以提高你的赢牌机会,但麻将仍然是一种博弈游戏,存在一定的运气成分。因此,即使你采用了这些策略,也不能保证每次都能胜牌。重要的是享受游戏过程,保持积极的心态。
1.99%防封号效果,但本店保证不被封号2.此款软件使用过程中,放在后台,既有效果3.软件使用中,软件岀现退岀后台,重新点击启动运行4.遇到以下情况:游/戏漏闹洞修补、服务器维护故障、等原因,导致后期软件无法使用的,请立即联系客服修复5.本店软件售出前,已全部检测能正常安装和使用.
原核生物的蛋白质合成分为四个阶段:氨基酸的活化、肽链合成的起始、延伸和终止。
①氨基酸的活化:游离的氨基酸必须经过活化以获得能量,才能参与蛋白质的合成,活化反应由氨酰tRNA合成酶催化,最终氨基酸连接在tRNA3ˊ端AMP的3ˊ-OH上,合成氨酰-tRNA。
②肽链合成的起始:首先IF1和IF3与30S亚基结合,以阻止大亚基的结合;接着,IF2和GTP与小亚基结合,以利于随后的起始tRNA的结合;形成的小亚基复合物经由核糖体结合点附着在mRNA上,起始tRNA和AUG起始密码子配对并释放IF3,并形成30S起始复合物。
大亚基与30S起始复合物结合,替换IF1和IF2+GDP,形成70S起始复合物。这样在mRNA正确部位组装成完整的核糖体。
③肽链的延伸:延伸分三步进行,进位:负载tRNA与EF-Tu和GTP形成的复合物被运送至核糖体,GTP水解,EF-TuGDP释放出来,在EF-Ts和GTP的作用下,EF-Tu GDP可以再次利用。转肽:肽酰转移酶将相邻的两个氨基酸相连形成肽键,该过程不需要能量的输入。
移位:移位酶(EF-G)利用GTP水解释放的能量,使核糖体沿mRNA移动一个密码子,释放出空载的tRNA并将新生肽链运至P位点。
④肽链的终止与释放:释放因子(RF1或RP2)识别终止密码子,并在RP3的作用下,促使肽酰转移酶在肽链上加上一个水分子并释放肽链。核糖体释放因子有助于核糖体亚基从mRNA上解离。
原核生物特点:
① 核质与细胞质之间无核膜因而无成形的细胞核(拟核或类核);RNA转录和翻译同时进行。
② 遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA)。
③ 以简单二分裂方式繁殖,不存在有丝分裂或减数分裂。
④ 没有性行为,有的种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞的准性行为。
⑤ 没有由肌球、肌动蛋白构成的微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象。
⑥鞭毛并非由微管构成,更无“9+2”的结构,仅由几条螺旋或平行的蛋白质丝构成。
⑦ 细胞质内仅有核糖体而没有线粒体、高尔基体、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器。
高中生物必修二详细的知识点总结
学习高中生物知识,以知识点为单位,分类复习更加容易记忆。为了帮助高中生掌握必修2课本中复制、转录及翻译知识点,下面我给大家带来高中生物必修2比较复制转录翻译知识点,希望对你有帮助。
高中生物必修2比较复制转录翻译知识点
概念:时间细胞有丝分裂的间期或减数第一次分裂间期生长发育的连续过程以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。
场所:进行场所主要细胞核主要细胞核细胞质的核糖体
模板:以DNA的两条链为模板以DNA的一条链为模板信使RNA
原料:4种脱氧核苷酸4种核糖核苷酸合成蛋白质的20种氨基酸
条件:需要特定的酶和ATP需要特定的酶和ATP
过程在酶的作用下,两条扭成螺旋的双链解开,以解开的每段链为模板,按碱基互补 配对 原则(A?T、C?G、T?A、G?C)合成与模板互补的子链;子链与对应的母链盘绕成双螺旋结构在细胞核中,以DNA解旋后的一条链为模板,按照A?U、G?C、T?A、C?G的碱基互补配对原则,形成mRNA,mRNA从细胞核进入细胞质中,与核糖体结合在酶的作用下,在核糖体中,按照A?U、G?C、U?A、C?G的碱基互补配对原则,密码子与反密码子配对,将转移RNA带来的氨基酸脱水缩合形成肽链。
产物两个双链的DNA分子一条单链的mRNA有一定氨基酸排列顺序的蛋白质
特点边解旋边复制:半保留式复制(每个子代DNA含一条母链和一条子链)边解旋边转录;转录后DNA仍保留原来的双链结构
遗传信息遗传信息的传递:亲代DNA传给子代DNA分子遗传信息的传递
由DNA传递到RNA遗传信息的表达:mRNA?蛋白质
高中生物必修2必考知识点
1、基因是DNA的片段,但必须具有遗传效应,有的DNA片段属间隔区段,没有控制性状的作用,这样的DNA片段就不是基因。每个DNA分子有很多个基因。每个基因有成百上千个脱氧核苷酸。基因不同是由于脱氧核苷酸排列顺序不同。基因控制性状就是通过控制蛋白质合成来实现的。DNA的遗传信息又是通过RNA来传递的。
2、基因控制蛋白质的合成:RNA与DNA的区别有两点:①碱基有一个不同:RNA是尿嘧啶,DNA则为胸腺嘧啶。②五碳糖不同:RNA是核糖,DNA是脱氧核糖,这样一来组成RNA的基本单位就是核糖核苷酸;DNA则为脱氧核苷酸。
3、转录:(1)场所:细胞核中。(2)信息传递方向:DNA?信使RNA。(3)转录的过程:在细胞核中进行;以DNA特定的一条单链为模板转录;特定的配对方式:
4、翻译:(1)场所:细胞质中的核糖体,信使RNA由细胞核进入细胞质中与核糖体结合。(2)信息传递方向:信使RNA? 一定结构的蛋白质。
5、信使RNA的遗传信息即碱基排列顺序是由DNA决定的;转运RNA携带的氨基酸(如甲硫氨酸、谷氨酸)能在蛋白质的氨基酸顺序的哪一个位置上是由信使RNA决定的,归根结底是由DNA的特定片段(基因)决定的。
6、信使RNA是由DNA的一条链为模板合成的;蛋白质是由信使RNA为模板,每三个核苷酸对应一个氨基酸合成的。公式:基因(或DNA)的碱基数目:信使RNA的碱基数目:氨基酸个数=6:3:1;脱氧核苷酸的数目=的基因(或DNA)的碱基数目;肽键数=脱去水分子数=氨基酸数目?肽链数。
7、一种氨基酸可以只有一个密码子,也可以有数个密码子,一种氨基酸可以由几种不同的密码子决定。
8、基因对性状的控制:①一些基因就是通过控制酶的合成来控制代谢过程,从而控制生物性状的。白化病是由于基因突变导致不能合成促使黑色素形成的酪氨酸酶。②一些基因通过控制蛋白质分子的结构来直接影响性状的。(如:镰刀型细胞贫血症)。
高中生物必修2知识点
1、证明DNA是遗传物质的实验关键是:设法把DNA与蛋白质分开,单独直接地观察DNA的作用。
2、肺炎双球菌的类型:①、R型(英文Rough是粗糙之意),菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。②、S型(英文Smooth是光滑之意):菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。如果用加热的 方法 杀死S型细菌后注入到小鼠体内,小鼠不死亡。格里菲斯实验:格里菲斯用加热的办法将S型菌杀死,并用死的S型菌与活的R型菌的混合物注射到小鼠身上。小鼠死了。(由于R型经不起死了的S型菌的DNA(转化因子)的诱惑,变成了S型)。
3、艾弗里实验说明DNA是?转化因子?的原因:将S型细菌中的多糖、蛋白质、脂类和DNA等提取出来,分别与R型细菌进行混合;结果只有DNA与R型细菌进行混合,才能使R型细菌转化成S型细菌,并且的含量越高,转化越有效。
4、艾弗里实验的结论:DNA是转化因子,是使R型细菌产生稳定的遗传变化的物质,即DNA是遗传物质。4、噬菌体侵染细菌的实验:①噬菌体侵染细菌的实验过程:吸附?侵入?复制?组装?释放。②DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。③结论:进入细菌的物质,只有DNA,并没有蛋白质,就能形成新的噬菌体。新的噬菌体中的蛋白质不是从亲代连续下来的,而是在噬菌体DNA的作用下合成的。说明了遗传物质是DNA,不是蛋白质。③此实验还证明了DNA能够自我复制,在亲子代之间能够保持一定的连续性,也证明了DNA能够控制蛋白质的合成。
5、肺炎双球菌的转化实验和噬菌体侵染细菌的实验只证明DNA是遗传物质(而没有证明它是主要遗传物质)
6、遗传物质应具备的特点:①具有相对稳定性②能自我复制③可以指导蛋白质的合成④能产生可遗传的变异。
7、绝大多数生物的遗传物质是DNA,只有少数病毒(如烟草花叶病病毒)的遗传物质是RNA,因此说DNA是主要的遗传物质。病毒的遗传物质是DNA或RNA。
8、①遗传物质的载体有:染色体、线绿体、叶绿体。②遗传物质的主要载体是染色体。
生物必修2知识汇编
第一章 遗传因子的发现
第1、2节 孟德尔的豌豆杂交实验
一、基本概念:(一般了解)
1.性状、相对性状、显性性状、隐性性状、性状分离(P3、4)
2.杂交、自交、测交
杂交;是指基因型相同或不同的生物体之间相互交配的过程。
自交:指植物体自花受粉或单性花的同株受粉过程。自交是获得纯合子的有效方法。
测交:就是让杂种一代与隐性个体杂交,用来测定F1的基因组合。
3.基因、等位基因、非等位基因、显性基因、隐性基因
基因:具有遗传效应的DNA片断,在染色体上呈线性排列。
等位基因:位于一对同源染色体的相同位置上,控制一对相对性状的基因。
非等位基因:包括非同源染色体上的基因及同源染色体的不同位置的基因。
显性基因:控制显性性状的基因。 隐性基因:控制隐性性状的基因。
4.纯合子、杂合子
5.基因型和表现型
表现型:在遗传学上,把生物个体表现出来的性状叫表现型。
基因型:在遗传学上,把与表现型有关的基因组成叫基因型。
表现型是基因型与环境相互作用的结果。
★二、孟德尔实验成功的原因:(重点掌握)
(1)正确选用实验材料:
一豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种
二具有易于区分的性状
(2)由一对相对性状到多对相对性状的研究 (从简单到复杂) (3)对实验结果进行统计学分析
(4)严谨的科学设计实验程序:假说-------演绎法
观察分析——提出假说——演绎推理——实验验证
★三、孟德尔豌豆杂交实验
(一)一对相对性状的杂交:
P:高茎豌豆×矮茎豌豆 DD×dd
↓ ↓
F1: 高茎豌豆 F1: Dd
↓自交 ↓自交
F2:高茎豌豆 矮茎豌豆 F2:DD Dd dd
3 : 1 1 :2 :1
基因分离定律的实质:
在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,在减数分裂形成配子过程中,等位基因随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代
(二)二对相对性状的杂交:
P: 黄圆×绿皱 P:YYRR×yyrr
↓ ↓
F1: 黄圆 F1: YyRr
↓自交 ↓自交
F2:黄圆 绿圆 黄皱 绿皱 F2:Y--R-- yyR-- Y--rr yyrr
9 :3 : 3 : 1 9 : 3 : 3 : 1
在F2 代中:
4 种表现型: 两种亲本型:黄圆9/16 绿皱1/16
两种重组型:黄皱3/16 绿皱3/16
9种基因型: 纯合子 YYRR yyrr YYrr yyRR 共4种×1/16
半纯半杂 YYRr yyRr YyRR Yyrr 共4种×2/16
完全杂合子 YyRr 共1种×4/16
基因自由组合定律的实质:
位于非同源染色体染色体上的非等位基因的分离或组合是互不干扰的。在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
注:基因的分离定律和自由组合定律的比较
基因的分离定律和自由组合定律的比较
项目\ 规律 分离定律 自由组合定律
研究的相对性状 一对 两对或两对以上
等位基因数量及在
染色体上的位置 一对等位基因位于一对同源染色体上 两对(或两对以上)等位基因分别位于不同的同源染色体上
细胞学基础 减数第一次分裂中同源染色体分离 减数第一次分裂中非同源染色体自由组合
遗传实质 等位基因随同源染色体的分开而分离 非同源染色体上的非等位基因自由组合
联系 分离定律是自由组合定律的基础(减数分裂中,同源染色体上的每对等位基因都要按分离定律发生分离,而非同源染色体上的非等位基因,则发生自由组合)。
F1的配子 2 4
F2的表现型 2 4
F2的基因型 3 9
第二章 基因和染色体的关系
★第一节:减数分裂和受精作用:
(这部分内容考纲要求理解,希望同学们能弄懂并记住)
一、减数分裂:是进行有性生殖的生物在产生成熟生殖细胞时,进行的染色体数目减半的细胞分裂。在减数分裂过程中,染色体只复制一次,而细胞分裂两次。减数分裂的结果是,成熟生殖细胞中染色数目比原始生殖细胞的减少一半。
★二、有性生殖细胞的形成:
1、 部位:动物的精巢、卵巢;植物的花药、胚珠
2、 精子的形成: 3、卵细胞的形成
1个精原细胞(2n) 1个卵原细胞(2n)
↓间期:染色体复制 细胞体积增大 ↓间期:染色体复制 细胞体积增大
DNA加倍,染色体不加倍 DNA加倍,染色体不加倍
1个初级精母细胞(2n) 1个初级卵母细胞(2n)
↓前期:联会、四分体、交叉互换(2n) ↓前期:联会、四分体 交叉互换(2n)
中期:同源染色体排列在赤道板上(2n) 中期:同源染色体排列在赤道板上(2n)
后期:配对的同源染色体分离(2n) 后期:配对的同源染色体分离(2n)
末期:细胞质均等分裂 ,染色体数目减半 末期:细胞质不均等分裂
2个次级精母细胞(n) 1个次级卵母细胞+1个极体(n)
↓前期:(n) ↓前期:(n)
中期:(n) 中期:(n)
后期:着丝点断裂,染色单体分开成为 后期:着丝点断裂,染色单体分开成为
两组染色体,染色体体数目加倍(2n) 两组染色体,染色体体数目加倍(2n)
末期:细胞质均等分裂(n) 末期:细胞质不均等分裂(n)
4个精细胞(n) 1个卵细胞(n)+3个极体(n)
↓变形 ↓
4个精子(n) 不久,三个极体都退化消失,只形成一个卵细胞
相关概念:
(1)联会、 同源染色体 四分体(P18)
(2)区分:同源染色体、四分体、非同源染色体、姐妹染色单体、非姐妹染色单体
3、 精子的形成与卵细胞形成的比较:
精子形成过程 卵细胞形成过程
相同点 染色体变化相同,即染色体先复制,减数第一次分裂时同源染色体联会,非姐妹染色单体交叉互换,同源染色体分离,非同源染色体自由组合,第一次分裂结束后染色体数目减半;第二次分裂时着丝点分裂,姐妹染色单体分离。
不同点 1个精原细胞经减数分裂形成4个精细胞,经变形而成4个精子。 两次细胞质分裂都为不均等分裂,结果1个卵原细胞经减数分裂形成1个卵细胞,没有变形过程。
★三、受精作用及其意义:
1、受精作用: 精子和卵细胞相互识别,融合成为受精卵的过程。
2、受精作用的意义:
减数分裂形成的配子多样性及精子和卵细胞结合的随机性,导致后代性状的多样性,这种多样性有利于生物在自然选择中进化,体现了有性生殖的优越性。
减数分裂和受精作用对于维持每种生物前后代体细胞中染色体的数目恒定,对于生物的遗传和变异,都有重要意义。
3、有丝分裂、减数分裂和受精作用中DNA、染色体的变化
DNA
4n 染色体
2n
n
0
精(卵)原细胞 精(卵)原细胞 受精卵 时间
的有丝分裂 的减数分裂 受精作用 的有丝分裂
四、细胞分裂相的鉴别:
1、细胞质是否均等分裂:不均等分裂——减数分裂中的卵细胞的形成
2、细胞中染色体数目:(1)若为奇数——减数第二分裂(次级精母细胞、次级卵母细胞、
减数第二分裂后期,看一极)(2)若为偶数——有丝分裂、减数第一分裂、
3、细胞中染色体的行为:(1)有同源染色体——有丝分裂、减数第一分裂(2)联会、四分体现象、同源染色体的分离——减数第一分裂(3)无同源染色体——减数第二分裂
4、姐妹染色单体的分离 一极无同源染色体——减数第二分裂后期
一极有同源染色体——有丝分裂后期
第二节、 基因在染色体上
1、基因和染色体行为存在明显的平行关系。
★2、伴性遗传
3、概念:伴性遗传:此类性状的遗传控制基因位于性染色体上,因而总是与性别相关联。
4、类型:X染色体显性遗传:抗维生素D佝偻病等 X染色体隐性遗传:人类红绿色盲、血友病
Y染色体遗传:人类毛耳现象
★5、X染色体隐性遗传:如人类红绿色盲
①致病基因Xa 正常基因:XA
②患者:男性XaY 女性XaXa 正常:男性XAY 女性 XAXA XAXa(携带者)
★③遗传特点:
(1)人群中发病人数男性大于女性
(2)隔代遗传现象:一般地说,此病由男性通过他的女儿传给他的外孙。
(3)交叉遗传现象:男性的红绿色盲基因从母亲传来,以后只能传给他的女儿。男性→女性→男性
二、X染色体显性遗传:如抗维生素D佝偻病 1、致病基因XA 正常基因:Xa
2、患者:男性XAY 女性XAXA XAXa 正常:男性XaY 女性XaXa
三、Y染色体遗传:人类毛耳现象 遗传特点:基因位于Y染色体上,仅在男性个体中遗传
四、性别类型:
XY型:XX雌性 XY雄性————大多数高等生物:人类、动物、高等植物
XW型:ZZ雄性 ZW雌性————鸟类、蚕、蛾蝶类
五、遗传病类型的鉴别:
(一)先判断显性、隐性遗传:
(1)父母无病,子女有病——隐性遗传(无中生有)(2)隔代遗传现象——隐性遗传
(3) 父母有病,子女无病——显性遗传(有中生无)(4)连续遗传、世代遗传——显性遗传
(二)再判断常、性染色体遗传:
(1)、父母无病,女儿有病——常、隐性遗传 (2)、已知隐性遗传,母病儿子正常——常、隐性遗传 (3)、已知显性遗传,父病女儿正常——常、显性遗传
第三章 基因的本质
第一节 DNA是主要的遗传物质
一、DNA是主要的遗传物质
1.DNA是遗传物质的证据
(1)肺炎双球菌的转化实验过程和结论 (2)噬菌体侵染细菌实验的过程和结论
实验名称 实验过程及现象 结论
细菌的转化 体内 转化 1.注射活的无毒R型细菌,小鼠正常。
2.注射活的有毒S型细菌,小鼠死亡。
3.注射加热杀死的有毒S型细菌,小鼠正常。
4.注射“活的无毒R型细菌+加热杀死的有毒S型细菌”,小鼠死亡。 DNA是遗传物质,蛋白质不是遗传物质。
体外 转化 5.加热杀死的有毒细菌与活的无毒型细菌混合培养,无毒菌全变为有毒菌。
6.对S型细菌中的物质进行提纯:①DNA②蛋白质③糖类④无机物。分别与无毒菌混合培养,①能使无毒菌变为有毒菌;②③④与无毒菌一起混合培养,没有发现有毒菌。
噬菌体侵 染细菌 用放射性元素35S和32P分别标记噬菌体的蛋白质外壳和DNA,让其在细菌体内繁殖,在与亲代噬菌体相同的子代噬菌体中只检测出放射性元素32P DNA是遗传物质
2.DNA是主要的遗传物质
★(1)某些病毒的遗传物质是RNA (2)绝大多数生物的遗传物质是DNA
第二节 DNA 分子的结构
1.核酸 核苷酸 (1)含氮碱基:A、T、G、C、U (2)磷酸 (3)五碳糖:核糖、脱氧核糖
★2.DNA分子结构的主要特点:
① DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。
② DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧
③ 两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A = T/U G = C
★3.特点
①稳定性:DNA分子中脱氧核糖与磷酸交替排列的顺序稳定不变
②多样性:DNA分子中碱基对的排列顺序多种多样(主要的)、 碱基的数目和碱基的比例不同
③特异性:DNA分子中每个DNA都有自己特定的碱基对排列顺序
★4.计算 1.在两条互补链中 的比例互为倒数关系。
2.在整个DNA分子中,嘌呤碱基之和=嘧啶碱基之和。
★3.整个DNA分子中, 与分子内每一条链上的该比例相同。
★第三节 DNA的复制
1.场所:细胞核; 时间:细胞分裂间期。(即有丝分裂的间期和减数第一次分裂的间期)
2.DNA分子复制过程:边解旋边复制 3.特点:半保留复制
4.基本条件:① 模板:开始解旋的DNA分子的两条单链;② 原料:是游离在细胞中的4种脱氧核苷酸;③ 能量:由ATP提供; ④ 酶:酶是指一个酶系统,不仅仅是指一种解旋酶。
5.意义:将遗传信息从亲代传给子代,从而保持遗传信息的连续性
第四节 基因是有遗传效应的DNA片段
1、基因的定义:基因是有遗传效应的DNA片段
2、DNA是遗传物质的条件:a、能自我复制 b、结构相对稳定 c、储存遗传信息 d、能够控制性状。
3、DNA分子的特点:多样性、特异性和稳定性。
练习:1、一般情况下,一条染色体有 1 个DNA分子,一个DNA分子上有 许多 个基因,每个基因又由 许多 个脱氧核苷酸组成。
2、 DNA分子中碱基排列顺序 代表了遗传信息,不同生物的DNA分子中不同的 碱基排列顺序构成了 DNA分子的多样性,同一生物DNA分子特定的 碱基排列顺序 构成了DNA分子的特异性。
第四章 基因的表达
★第一节 基因指导蛋白质的合成
转录
定义:在细胞核中,以DNA的一条链为模板合成mRNA的过程。
场所:细胞核 模板:DNA的一条链 信息的传递方向:DNA mRNA
原料:含A、U、C、G的4种核糖核苷酸 产物:信使RNA
翻译
定义:游离在细胞质中的各种氨基酸,以mRNA为模板合成具有一定氨基酸排列顺序的蛋白质,这一过程叫做翻译。 场所:细胞质(核糖体)
条件:ATP、酶、原料、模板(mRNA) 信息传递方向:mRNA 蛋白质。
密码子:mRNA上3个相邻的碱基决定1个氨基酸。每3个这样的碱基又称为1个密码子。
翻译位点:一个核糖体与mRNA的结合部位形成2个tRNA的结合位点。(一种tRNA携带相应的氨基酸进入相应的位点)
第2节 基因对性状的控制
1、中心法则:遗传信息可以从DNA流向DNA,即DNA的自我复制;也可以从DNA流向RNA,进而流向蛋白质,即遗传信息的转录和翻译。但是,遗传信息不能从蛋白质流向蛋白质,也不能从蛋白质流向DNA或RNA。近些年还发现有遗传信息从RNA到RNA(即RNA的自我复制)也可以从RNA流向DNA(即逆转录)。
2、基因、蛋白质与性状的关系:
(1)基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状,如白化病等。
(2)基因还能通过控制蛋白质的结构直接控制生物体的性状,如镰刀型细胞贫血等。
(3)基因型与表现型的关系:基因的表达过程中或表达后的蛋白质也可能受到环境因素的影响。
生物体性状的多基因因素:基因与基因;基因与基因产物;与环境之间多种因素存在复杂的相互作用,共同地精细的调控生物体的性状。
第5章 基因突变及其他变异
★第一节 基因突变和基因重组
1、镰刀型贫血症的原因
DNA的碱基对发生变化—mRNA分子中的碱基发生变化—氨基酸改变—蛋白质改变——性状改变
2、基因突变的概念(P81)
3、基因突变的原因和特点: 原因:物理原因、化学原因、生物因素。
特点:a、普遍性 b、随机性 c、低频性 d、多数有害性 e、不定向性
4、基因突变的意义:它是新基因产生的途径;是生物变异的根本来源;是生物进化的原始材料。
5、基因重组的概念(P83)
6、类型:a、非同源染色体上的非等位基因的自由组合。b、同源染色体上等位基因间的交叉互换
7、基因重组的意义:基因重组产生新的基因型,也是生物变异的来源之一,对生物的进化也具有重要的意义。
练习:新基因的产生的途径是 基因突变 ;生物变异的根本来源是 基因突变 。进行有性生殖的生物其亲子代之间总是存在着一定的变异的主要原因是 基因重组 。
第2节 染色体变异(了解)
1. 染色体结构的变异 :缺失 (猫叫综合症)、 增加、 移接、颠倒
2、染色体数目的变异 : 个别染色体增减;以染色体组的形式成倍的增加与减少
2、染色体组
(1)概念:(P86)例如:雌果蝇的一个卵细胞(Ⅰ、Ⅱ、Ⅲ、Ⅳ)。
(2)特点:不含同源染色体,但含有每对同源染色体中的一条。
第3节 人类遗传病
1、 概念:通常是指由于遗传物质改变而引起的人类疾病,主要可以分为单基因遗传病,多基因遗传病和染色体异常遗传病三大类。
常染色体 显性遗传病:并指、多指、软骨发育不全
隐性遗传病:白化病、苯丙酮尿症、侏儒症
单基因 显性:抗维生素D佝偻病
遗传病 性染色体 X 隐性:红绿色盲、血友病
Y 毛耳病(只有男性患者)
多基因遗传病:原发性高血压、冠心病、哮喘病、青少年型糖尿病
人类遗 原因 :数目异常、结构异常
传病 染色体遗传病: 类型 常染色体:21三体综合症、猫叫综合症
性染色体:性腺发育不良
2、 危害 遗传咨询 婚前检测与预防
监测与预防 产前诊断 :羊水、B超、孕妇血细胞检查、基因诊断
3、人类基因组计划:是测定人类基因组的全部DNA序列,解读其中包含的遗传信息。中、美、德、英、法、日参加了这项工作。
第6章 从杂交育种到基因工程
1、比较四中育种(考纲要求:了解)
杂交育种 诱变育种 多倍体育种 单倍体育种
处理 P F1 F2
在F2中选育 用射线、激光、
化学药物处理 用秋水仙素处理
萌发后的种子或幼苗 花药离体培养
原理 基因重组,
组合优良性状 人工诱发基因
突变 破坏纺锤体的形成,
使染色体数目加倍 诱导花粉直接发育,
再用秋水仙素
优
缺
点 方法简单,
可预见强,
但周期长 加速育种,改良性状,但有利个体不多,需大量处理 器官大,营养物质
含量高,但发育延迟,结实率低 缩短育种年限,
但方法复杂,
成活率较低
例子 水稻的育种 高产量青霉素菌株 无籽西瓜 抗病植株的育成
2、基因工程及应用(P102-105)(理解)
3、转基因生物和转基因食品的安全性(考纲要求:了解)
第七章 现代生物进化理论
★达尔文的自然选择学说的主要内容及应用(考纲要求:理解)
★现代生物进化理论的主要内容(考纲要求:理解)
一、 种群基因频率的改变与生物进化
1、 种群是生物进化的基本单位 概念:种群、种群基因库、基因频率(P115)
2、突变和基因重组产生进化的原材料
①可遗传变异来源于基因突变、基因重组和染色体变异。②突变和重组不能决定进化方向
3、自然选择决定生物进化的方向
在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。
二、 隔离与物种的形成
1、 基本概念:隔离、物种、 生殖隔离、地理隔离
2、隔离在物种形成中的作用
种群 小种群(产生许多变异) 新物种
最早的生物化石是距今:35亿年。
无性生殖→有性生殖 原核生物→真核生物
简单→复杂 低等→高等 水生→陆生 单细胞→多细胞
三 共同进化与生物多样性的形成
1、 共同进化——不同物种之间、生物与无机环境之间要相互影响中不断进化和发展
2、 生物多样性——主要包括三个层次:基因多样性、物种多样性和生态系统多样性
关于“简述原核生物蛋白质的合成过程”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[若云]投稿,不代表比比号立场,如若转载,请注明出处:https://m.bibi8.cc/cshi/202504-181042.html
评论列表(4条)
我是比比号的签约作者“若云”!
希望本篇文章《7分钟科普“66徐州麻将怎么老是输钱”(其实真的确实有挂)》能对你有所帮助!
本站[比比号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,...